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Abstract—In this paper both Bayesian and Maximum 

Likelihood (ML) estimation methods are applied to QGARCH 

model. The Bayesian estimation is based on 

Metropolis-Hastings (MH) algorithm with an adaptive method. 

Simulation studies indicate that the method is very efficient for 

generating uncorrelated Monte Carlo data as the 

autocorrelation test and some other hypothesis tests 

demonstrate. All programs are coded in C++, R and SAS. For 

illustration purpose, the estimation methods are applied to ten 

years data of Nikkei 225 from 2005-2014. 

Index Terms—GARCH, QGARCH; Bayesian estimation; 

Metropolis-Hasting (MH) algorithm; Markov Chain Monte 

Carlo method  

I. INTRODUCTION 

In statistics, signal processing, econometrics and mathem

atical finance, a time series is a sequence of data points, 

measured typically at successive time instants spaced at 

uniform time intervals. Time series models can have many 

forms and represent different stochastic processes. Among 

these time series models, Box-Jenkins (1970) models are 

widely used. Two useful types of Box-Jenkins models are 

the autoregressive (AR) and the moving average (MA) 

models. [1] The Box-Jenkins models require both stationary 

and invertibility. A time series is stationary if the statistical 

properties such as the mean, the variance of the time series 

are essentially constant over time. This implies that 
2[ ] , ( )t tE y Var y   for all t. Invertability means 

that a time series ty  can be written as a function of past

observation i.e. 1 2, ,...t ty y  . In practice, before using the 

Box-Jenkins models, we may use sample autocorrelation 

function (SAC) and the sample partial autocorrelation 

function (SPAC) to verify these two assumptions. If a time 

series is non-stationary, we may transform it into a 

stationary time series by using some form of differencing 

transformations (First difference, Second difference). [2] 

Once a tentative Box-Jenkins model is chosen based on the 

behavior of SAC and SPAC for ty , we may check the

adequacy of the model by analyzing the residuals obtained 

by fitting the model. There are many ways to test all model 

assumption and its adequacy, Box-Pierce statistic or 

Ljung-Box statistic is used widely in practice. [3] 

Although the Box-Jenkins models win big success in 

application, they have limitations when fitting the times 

series which shows volatility clustering property. [4] 

The volatility clustering property is the tendency for 

large (small) swings in value of a series to be followed 

by large (small) swings of random direction. It 

captures the idea that some markets represent periods 

of notably high or low volatility. [5]There is a degree 

of autocorrelation in the riskiness of financial returns. 

Financial analysts, looking at plots of daily returns 

such as in Figure 1, notice that the amplitude of the 

returns varies over time and describe this as “volatility 

clustering.” 

For this reason, Engle (1982) relaxes the constant 

variance assumption of classic Box-Jenkins 

models.[6]Engle (1982) introduced a new class of 

stochastic process called autoregressive conditional 

heteroscedastic (ARCH). The AR comes from the fact 

that these models are autoregressive models in squared 

returns. The conditional comes from the fact that in 

these models, the next period's volatility is 

conditioned on information of the current period. 

Heteroscedasticity means non constant volatility. And 

a more general class of processes, GARCH 

(Generalized Autoregressive Conditional 

Heteroskedastic), is introduced by Bollerslev (1986), 

allowing for a much more flexible lag structure. The 

extension of the ARCH process to the GARCH 

process bears much resemblance to the extension of 

the standard time series AR process to the general 

ARMA process and, as argued below, permits a more 

parsimonious description in many situations. [7] There 

are many extensions of the GARCH model to include 

additional properties of the volatility, such as 

EGARCH (Exponential GARCH) by Nelson (1991), 

[8]FGARCH (Factor GARCH) by Nerlove (1989), 

IGARCH (Integrated GARCH) by Nelson (1990) and 

so on. Here is the formula of a simple GARCH (1,1) 

model, which is the simplest but often very useful.

2 2 2
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It is true (as will be seen in Fig. 2 that the volatility 

response is higher after negative news (returns), which 

is known as the leverage effect, first observed by 

Black (1972). In order to cope with this fact, some 

models which introduce asymmetry into the volatility 

response function are proposed. In our paper, we focus 

on the QGARCH (Quadratic GARCH) model 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Econometrics
http://en.wikipedia.org/wiki/Mathematical_finance
http://en.wikipedia.org/wiki/Mathematical_finance
http://en.wikipedia.org/wiki/Data_point
http://en.wikipedia.org/wiki/Stochastic_processes
http://en.wikipedia.org/wiki/Autoregressive
http://en.wikipedia.org/wiki/Moving_average_model


10                                                     JOURNAL OF SIMULATION, VOL.5, NO. 1, March 2017 

©  ACADEMIC PUBLISHING HOUSE 

developed by Sentana (1995), which adds an additional term 

proportional to a return to the volatility response function. 

[9] 

 

Figure 1. News impact curves of the Nikkei 225, DAX and Hang Seng 

indexes 

Source: Tetsuya Takaishi, “Bayesian inference with an 

adaptive proposal density for GARCH models”, 

Computational Finance (q-fin.CP), J. Phys.: Conf. Ser. 221 

(2010) 012011 

II. QGARCH MODELS 

The volatility response function of GARCH model is 

symmetric under positive or negative observations ty
. 

However, in the market, some asset return is shown the 

leverage effect, i.e. the volatility is higher after negative 

observations than after positive ones. [10]In this study we 

use the QGARCH (1, 1) model given by 

2 2 2
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where the additional term 1ty  introduces the asymmetry 

into the model. And a proof of the wide-sense stationary 

condition of QGARCH model is shown that ( ) 0,tE y 

and the unconditional variance

1 1

var( )
1

ty


 


 
.  

For Bayesian estimation, recall that the likelihood 

function  ( ) P data | hypothesisL y    is a function 

of ty (t=1,2,…,n) given that  is known. We can use 

Bayes theorem to write P(hypothesis|data) as follows:  
(data Hypothesis) (Hypothesis)

P(Hypothesis data)= ,
(data)

P P

P (3) 

(Hypothesis)P  is called the "Prior Probability" 

because it reflects prior beliefs about the probability of a 

given hypothesis. In our study, we use ( )  to denote the 

prior probability. In Bayesian analysis, the choice for 

( )  depends on the behavior of the characteristic that the 

random variable   represents. ( )   represents 

uncertainty about   before the data is taken into account, 

the choice for ( )   is often a subjective assessment. Here 

we assume   follows uniform distribution before the 

data is concerned, therefore the prior probability 

density function ( )   is constant. 

P(Hypothesis|data) is usually called the posterior 

probability, meaning that it reflects the belief about 

the hypothesis after collecting the data. In our study, 

we use ( )y  to denote the posterior probability.  

The posterior distribution replaces the likelihood 

function as an expression that incorporates all 

information. If we want to estimate  and parallel the 

development of the Maximum Likelihood estimator of 

 , we could take as our estimator of  which 

maximizes the posterior distribution, that is, estimate 

 with the mode of the posterior distribution. The 

posterior distribution is a distribution function; so we 

could just as well estimate   with the median or 

mean of the posterior distribution. We will use the 

mean of the posterior distribution as our estimate of 

 , and in general we could estimate ( )  given 

1 1,..., ;n nY y Y y   that is, take 

1[ ( ) ,..., ]nE Y Y   as our estimate of ( )  . It is a 

well-known fact that under the squared error loss 

function, mean of the posterior distribution is the 

optimal estimator for  . Since in our case 

( )   , the expectation can be expressed as: 

1

( ) ( )
[ ( ) ,..., ] ( )

( ) ( )
n

L y d
E Y Y y d

L y d

    
    

   
 




   (4) 

where   represents vector of parameters and the 

sign of integration represents multiple integrals. 

For a specific simple case, the expected value of 

parameter can be calculated through the integral 

directly. But, it seems to be cumbersome when the 

posterior function is complicated, just like in our case. 

So, instead of evaluating integral in formula (2.5.3), 

we evaluate it using MCMC technique described in 

Section 3.  

III. MCMC STIMULATION WITH MH 

ALGORITHM 

Markov chain Monte Carlo (MCMC) methods are a 

class of algorithms for sampling from probability 

distributions based on constructing a Markov 

chain that has the desired distribution as its stationary 

distribution. The state of the chain after a large 

number of steps is then used as a sample from the 

desired distribution. Markov chain Monte Carlo 

(MCMC) algorithms such as the Metropolis-Hastings 

(MH) algorithm and the Gibbs sampler have become 

extremely popular in statistics, as a way of 

approximately sampling from complicated probability 

distributions in high dimensions. The development of 

MCMC algorithms has transformed Bayesian 

inference by allowing practitioners to sample from 

complicated posterior distributions. For Equation 2.5.3, 

http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Probability_distribution
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http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Markov_chain#Steady-state_analysis_and_limiting_distributions
http://en.wikipedia.org/wiki/Markov_chain#Steady-state_analysis_and_limiting_distributions
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we see that 1[ ( ) ,..., ]nE Y Y   is the “posterior mean” of 

( )  . Let 1( ) [ ( ) ,..., ]nE Y Y    , in Bayesians 

inference we are interested in estimating ( )   to obtain 

Bayes estimate.  

MCMC algorithm is to construct a Markov Chain that has 

the desired distribution as its stationary distribution by using 

Monte Carlo simulation method. An MCMC algorithm 

requires a probability distribution ( )P   on a state space 

 , a Markov chain on   which can be easily executed 

on a computer, ( )P   has to be stationary. ( )P   ( )i  

is also called the long run proportion of time the process will 

spend in state i. If ( )P  is stationary, the key notion is that 

the space   must be reversible. 

Definition. A Markov chain on a state space   is 

reversible with respect to a probability distribution ( )P  on 

  if ( ) ( , ) ( ) ( , ), ,P i P i j P j P j i i j  , 

( , )P i j is the transition probability from state i to state j. 

The reversibility condition implies that the rate of 

transition from i to j is the same as the rate of transition from 

j to i. The reversibility condition implies stationary. Because 

( ) ( ) ( , ) ( ) ( , ) ( ) ( , ),
j j j

P i P i P i j P i P i j P j P j i
  

    
which proves stationary. Thus, when constructing an 

MCMC algorithm, it suffices to create a Markov chain 

which is reversible with respect to ( )P  . The simplest way 

to do so is to use Metropolis-Hastings (MH) algorithm. 

Let ( ) ( ) ( )u L y     , as a result the posterior 

density ( )P  can be written as  

( )
( ) .

( )

u
A

u

x dx
P A

x dx


 




 


    (5) 

where A is subset of state space  . 

Let ( , )Q x  be a Markov chain on p-dimensional state 

space  , where x is specific value of X, the Metropolis 

Hastings algorithm proceeds as follows: 

1) The target distribution has p.d.f. ( )P  on  . 

2) Suppose 
(1) (2) ( 1), ,..., tx x x 

are generated by using 

MH algorithm, starting from initial state 
(0)x . 

3) A proposal distribution with p.d.f. ( ')g x x  is 

defined for all , 'x x  . For general MH methods, the 

proposal distribution can be any conditional distribution. 

4) At step t-1, the current state is 
( 1)tx 

. A candidate 

state 
*x  is generated from the current proposal distribution, 

* * ( 1)( )tx g x x 
. 

5) The decision on whether or not to accept 
*x  as the 

next state is based on a Bernoulli trial with probability of 

success 
( 1)( , *)t

t x x    defined as follow: 

( 1)

( 1) ( 1)

( *) ( *)
min[1, ]

( ) ( * )

t

t t t

P x g x x

P x g x x




 


     (6) 
6) If the outcome is success we accept the proposed 

state and let *tx x ; if it is not a success, we reject 

the proposed state and let 
( 1)t tx x  . More 

precisely, 

t( )

( 1)

*, with probability α ,

, otherwise

t

t

x
x

x 


 


     (7) 

7) Replace t-1 by t and repeat until we get an 

acceptable proposed state.  

The Markov chain constructed by MH algorithm 

is reversible, which means

( ') ( ') ( ' ) ( )P x x P x P x x P x . So ( )P   is 

stationary distribution. And this stationary distribution 

is same as posterior distribution. How should we 

choose the proposal distribution of ( ')g x x ? There 

are many different classes of ways of choosing the 

proposal density, such as symmetric Metropolis 

Algorithm or independence sampler. The details of 

how to implement the MH algorithm on GARCH 

model are provided. In order to facilitate 

understanding, the simulation can be summarized in 

following steps: 

(1) First we set an initial value 

0 0 0 0 0( , , , )      and i=1.   

(2) Then we generate a new value i from a 

certain proposal density 1( ).i ig     In our case, we 

choose multivariate Student’s t-distribution as our 

proposal density. And it does not depend on the 

previous value, i.e. 1( ) ( )i i ig g    . In other 

word, it can be calculated by the density function of 

multivariate Student’s t-distribution as follows: 
( )/2

1

1/2 /2

( ) ( ) (( ) / 2) / ( / 2)
( ) 1

( )

v p
t

p

M M v p v
g

v Det v

 




 
      

   
   

(8) 

 Where M is vector of expected value of  , and 

 is covariance matrix of  . 

(3) We calculate the acceptance probability as  

1

1 1

( )( )
min 1, .

( ) ( )

i ii

i i i

gP

P g

 


  



 

 
  

 

         (9)

 

 In our case, 1( ) ( )i i ig g    , above 

formula can be rewritten as 

1

1

( ) ( )
min 1, .

( ) ( )

i i

i i

P g

P g

 


 




 
  

 

         (10) 

where ( ) ( ) ( ) ( )i u i i iP L y       , ( )iL y 

is likelihood function of i . Since we assume 

http://en.wikipedia.org/wiki/Markov_chain
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( )i  is uniform distributed which has flat p.d.f., the 

acceptance probability becomes 

       

 

1

1

( ) ( )
min 1, .

( ) ( )

i i

i i

L y g

L y g

 


 




 
  

      (11)

 

(4) Generate Uniform(0,1)u . 

(5) If 

1

,

, ,

i

i i i

u accept

u reject then

 

    




      (12) 

(6) Go back to (2) with an increment of i=i+1. 

The efficiency of the MH algorithm depends on how we 

choose the proposal density and initial value of parameters. 

The posterior density of GARCH parameters often shows a 

Gaussian-like shape. Thus one may choose a density similar 

to a Gaussian distribution as the proposal density. Also, to 

cover the fat tails of the posterior density, some researchers 

attempt to use a multivariate Student’s t-distribution instead 

of Gaussian distribution as the proposal density.  

The (p-dimensional) multivariate Student’s t-distribution 

is given by 

( )/2
1

1/2 /2

( ) ( ) (( ) / 2) / ( / 2)
( ) 1

( )

v p
t

p

M M v p v
g

v Det v

 




 


     
  



 
 
   (13) 

where   is the vector of parameters and M is expected 

value of  , [ ]i iM E  .   is the covariance matrix of 

 . v is degree of freedom. When v , the Student’s 

t-distribution converges to the Gaussian distribution. At 

small v , Student’s t-distribution has a fat-tail.  

The idea of adaptive method is to update vector M and 

covariance matrix  adaptively during the process. The 

steps are as follows: 

(1) First we make a short run by any MCMC method and 

sample some data on  .  

(2) Then we estimate mean vector M and covariance 

matrix   from those data. 

(3) By using MH simulation with the proposal density, we 

accumulate data until we get say 1000 data point.  

(4) Then we recalculate new M and  from accumulated 

data and substitute the previous ones. 

In this way, we adaptively change the shape of 

multivariate Student’s t-distribution to fit the posterior 

density more accurately and fast. An empirical example is 

given in Section 4. 

IV. EMPIRICAL STUDIES 

In this Section, we make empirical study based on Nikkei 

225 index, which shows the leverage effect and volatility 

clustering property. The sample period is from 4th January 

2005 to 30th December 2014. Let the dependent variable be 

daily return, denoted by tr . 1100(ln( / ) )i i ir p p  

 where ip
is daily closing settlement price of Nikkei 

225, 
1,2,...,2771i 

. 


is average of 

1ln( / )i ip p  . Figure 4 shows the time series of the 

return of the Nikkei 225 index calculated. 

 

Figure 2. Time series of the return of the Nikkei 225 index 

4.1 Bayesian Inference by adaptive MCMC method  

When dealing with the Nikkei index, we use the 

same strategy which can be summarized as follows: 

First, use the input data on tr  (t=1,2,…,2771), 

initial value of 0 0 0 0 0( , , , )      and MCMC 

to make short run and generate 6000 samples from the 

posterior distribution. Considering the simplification 

of the problem and reducing the execution time of 

computer, I choose MH algorithm with symmetric 

Metropolis Algorithm. So, ( ') ( ' )g x x g x x , and 

the acceptance probability simplifies to  

( )
( , ) min[1, ]

( )

u

u

y
x y

x







           (14) 

Second, each generated sample is of the form of 

( , , , )     . Discard first 5000 samples as 

burn-inprocess and retain the last 1000 samples. Then, 

estimate M and  , by calculating the mean vector 

and covariance matrix of these 1000 samples.  

Third, having the initial M and  , we can use 

adaptive MCMC method now. Our strategy is to 

update   and M once we accumulate 100 samples 

based on newly updated M and  . In this adaptive 

MCMC method, we use MH algorithm with 

multivariate Student’s t-distribution as the proposal 

distribution. We still choose R in this step, because 

there is on existing package in R which generates 

multivariate Student’s t-distribution.  

Last, keep updating M and   until we accumulate 

5000 acceptable samples, then we can find Bayes 

estimate = (1/N) 
5000

1

ˆ (1/ 5000) kk
 


   

Following the above steps, we finally find the 

parameter estimates of QGARCH model. The 

summary of result is in Table 1. And from Figure 5, 

we can see these parameters converge to the final 
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value quickly. 

TABLE I.  

RESULTS OF QGARCH PARAMETERS. SD STANDS FOR STANDARD 

DEVIATION 

 ω γ α β 

Nikk

ei 

225 

0.0634563

14 

-0.1176120

16 

0.0735166

86 

0.9000200

55 

SD 
0.0200451

65 

0.0173420

19 

0.0105352

09 

0.0163187

41 

 

Figure 3. The convergence of the parameters of QGARCH 

A Diagnostic test 

By using the estimator of parameters we get from Table 1, 

we could construct a simulated variance sequence of time 

series tr , and then we could construct residual t . We are 

using autocorrelation test and Ljung box test with 15 lagged 

autocorrelation to test these constructed residuals.  

First, autocorrelation function test 

 

Figure 4. Autocorrelation function test 

In statistics, the autocorrelation function (ACF) test 

is used to identify the degree of autocorrelation in a 

time series. It measures the correlation between the 

current and lagged observations of the time series of 

stock returns. Since the autocorrelation values of all 

lags are within the range, we could conclude that there 

is no autocorrelation in residual. This is consistent 

with the assumption of QGARCH model for t . 

Second, Ljung Box test 

Given an estimate of the parameters for a model, it 

is desirable to determine if the model adequately 

explains the variance process. A common approach is 

to divide each ty  by the estimated standard 

deviation t  for that time point, and square these 

standardized residuals or we call it constructed 
2

t . 

Finally perform a Ljung-Box test on 
2

t . If the 

statistic is large or p-value is small, then there is 

evidence that the model is inadequate. Wong and Li 

(1995) studied the rank Ljung-Box test in this setting. 

Often a “Ljung box test” with 15 lagged 

autocorrelations is used for QGARCH model. 

 

Due to the large p-value, we can conclude that the 

QGARCH model is good fit of the time series data. 

V. CONCLUSIONS 

In this paper, we introduce background of GARCH 

and QGARCH models at the beginning. They have been 

proved to explain the financial time series data 

successfully. Then, we have performed Maximum 

Likelihood estimation and the Bayesian inference of the 

QGARCH model by the MCMC algorithm. The MCMC 

algorithm was implemented by the MH method with the 

adaptive proposal density. The adaptive proposal density 

is assumed to be the Student’s t-distribution and the 

distribution parameters are determined by the data 

sampled by the MCMC simulation. The distribution 

parameters are updated during the MCMC simulation 

adaptively to match the posterior density of the model 

parameters. We have applied our method for Nikkei 225. 

The diagnosis test results show that our method is very 

efficient for generating uncorrelated Monte Carlo data.  
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